Combinatorial Properties of Permutation Tableaux

نویسندگان

  • ALEXANDER BURSTEIN
  • NIKLAS ERIKSEN
چکیده

Abstract. We give another construction of a permutation tableau from its corresponding permutation and construct a permutation-preserving bijection between 1-hinge and 0-hinge tableaux. We also consider certain alignment and crossing statistics on permutation tableaux that are known to be equidistributed via a complicated map to permutations that translates those to occurrences of certain patterns. We give two direct maps on tableaux that proves the equidistribution of those statistics by exchanging some statistics and preserving the rest. Finally, we enumerate some sets of permutations that are restricted both by pattern avoidance and by certain parameters of their associated permutation tableaux.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX

We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...

متن کامل

Evacuation and a geometric construction for Fibonacci tableaux

Tableaux have long been used to study combinatorial properties of permutations and multiset permutations. Discovered independently by Robinson and Schensted and generalized by Knuth, the Robinson-Schensted correspondence has provided a fundamental tool for relating permutations to tableaux. In 1963, Schützenberger defined a process called evacuation on standard tableaux which gives a relationsh...

متن کامل

J ul 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX

We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an expli...

متن کامل

Corners in Tree-Like Tableaux

In this paper, we study tree–like tableaux, combinatorial objects which exhibit a natural tree structure and are connected to the partially asymmetric simple exclusion process (PASEP). There was a conjecture made on the total number of corners in tree–like tableaux and the total number of corners in symmetric tree–like tableaux. In this paper, we prove both conjectures. Our proofs are based on ...

متن کامل

Titre: Combinatoire des tableaux et polynômes orthogonaux

• Permutation tableaux are new objects that come from the enumeration of the totally positive Grassmannian cells [11, 15]. A permutation tableau [12] is a Ferrers diagram together with a filling of the cells with 0’s and 1’s such that the following properties hold: Each column contains at least one 1 and there is no 0 which has a 1 above it in the same column and a 1 to its left in the same row...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008